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Building knowledge-based systems for detecting man-made structures
from remotely sensed imagery

By D. M. McKEowN, Jr
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, U.S.A.

[Plates 1-3]

Y 4

In this paper we review and discuss several emerging themes in the area of image-
interpretation for automated cartography and digital mapping. Our primary

~ observations are that the detection, interpretation, and analysis of man-made
structures by remotely sensed imagery requires the integration of spatial knowledge
with image-analysis and interpretation techniques. General knowledge of structural
and spatial layouts for man-made structures, as well as a prior: map knowledge, can
be expected to constrain search during image analysis. Spatial databases consisting
of geographically referenced facts should form the basis of a priori knowledge
necessary to perform interpretation and have a dual role as the repository of partially
compiled facts acquired during scene-analysis.
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Knowledge-based interpretation of remotely sensed data requires knowledge about the scene
under consideration. Knowledge about the type of scene (airport, suburban housing develop-
ment, urban city) can aid in low-level and intermediate-level image-analysis, and can be
expected to drive high-level interpretation by constraining search for plausible consistent scene
models. Loosely speaking, this knowledge base should contain known facts and spatial relations
between objects in an area of interest, access to historical or a priori map knowledge, and
methods to relate Earth coordinates to pixel locations in digital imagery.

In this paper we describe three experiments in knowledge-based interpretation. Each
experiment uses spatial and structural knowledge at an increasingly higherlevel of detail. These
experiments can be characterized as narrowly defined, vertically integrated image-analysis
systems used to extract specific features such as roads, buildings and complex sites such as
airports and urban environments. These programs are not ‘general vision’ systems because
they capitalize on the task-specific nature of the problem domain to constrain the complexity
of the world. Nevertheless, they are important datapoints in a domain where many important
questions concerning knowledge representation and use largely remain unanswered.

The primary role for knowledge-based systems in the analysis of remotely sensed imagery is
to provide constraints so that image analysis and interpretation tools can be used in spite of
their inherently error-prone performance. The goal then, is to integrate rule-based systems
with image-analysis techniques to constrain the search space of possible scene interpretations
by using domain and general knowledge. These constraints can be characterized as ‘what to
look for’ and ‘where to look for it’. Currently, knowledge-based systems are most powerful
(and successful) in narrow, well-defined task areas. It is certainly the case that to solve the
general remote-sensing problem an analysis system will require use of general problem-solving
capabilities and vast amounts of domain and common-sense knowledge, currently far beyond
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424 D.M. McKEOWN

the capability of any research system. However, even without general problem-solving cap-
abilities, there is much to be gained by the development of ‘existence proof’ knowledge-based
interpretation systems. Current image-processing systems are incapable of high-level descrip-
tion of the results of image interpretation. The combination of a map-based world model and
knowledge-based systems which have site-specific or task-specific knowledge can be used to
bridge the gap between users and current state-of-the-art image-interpretation systems. The
long-term goal of our research is to develop systems that can interact with a human carto-
grapher or analyst at a highly symbolic level, maintain a database of previous events, and use
expert-level knowledge to predict areas for fruitful analysis, and integrate the results of the
analysis into a coherent model.

In the remainder of this paper we describe three experimental analysis systems that use low-
level, intermediate-level and high-level spatial knowledge, respectively, to extract and interpret
man-made structures from aerial imagery. These systems are MACHINESEG, a system ‘for map-
guided image segmentation, ARF, a system for finding and tracking roads, and spam, a rule-
based system for airport scene interpretation. Each is linked by the common use of a spatial
database system, MAPS/CONCEPTMAP, to provide access to and information concerning image,
map, and terrain data. In the following section we briefly describe the maps database
representation for spatial knowledge.

2. AN OoVERVIEW oF MAPS

The MaPs spatial database (McKeown 1983, 19844, b, 1987) was developed between 1980
and 1984, supported by the parpA Image Understanding Program as research into large-scale
spatial databases and spatial knowledge representation. It is interesting that this system has
expanded from its original research goal of developing an interactive database for answering
spatial queries into a component of several knowledge-based image-understanding systems
under development at Carnegie-Mellon University. MAPs is a large-scale image—map database
system for the Washington, D.C. area that contains approxifhately 200 high-resolution aerial
images, a digital terrain database and a variety of map databases from the United States
Geological Survey (USGS) and the Defense Mapping Agency (DMA). MaPs has been used as
a component for an automated road finder—follower, a stereo verification module, a 3-D scene-
generation system, and a knowledge-based system for interpreting airport scenes in aerial
images. In addition, MAPs has an interactive user-query component that allows users to perform
spatial queries with high-resolution display of aerial imagery as a method for indexing into the
spatial database. This capability to relate, over time, imagery at a variety of spatial resolutions
to a spatial database forms a basis for a large variety of interpretation and analysis tasks such
as change detection, map update and model-based interpretation.

Figure 1 shows the system organization of MAPs. Four databases are maintained within MAPs:
a digital terrain database, a map database, a landmark database and an image database. A
fifth database, cONCEPTMAP, consists of a schema-based representation for spatial entities and
a set of procedural methods that provide a uniform interface to each of the four component
databases for interactive users or application programs. It is this interface that allows us to
represent and access image, map, terrain and collateral data in a manner that best suits the
intrinsic structure of the data. At the same time the cONGEPTMAP databases provides uniform
access to a variety of spatial data independent of the particular internal structure. This is in
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FiGURE 1. MAPS: system overview.

sharp contrast to methods proposed for uniform representation of image and cultural data such
as raster data sets and regular decompositions such as quadtrees or k—d trees.

2.1. Schema-based representation for spatial entities

The conceEpTMAP database uses a schema-based representation for spatial entities. The use
of schemas (or frames) is a well-understood A1 methodology for representing knowledge. Such
a representation can be combined within several problem-solving methods such as semantic
networks, scripts or production systems to construct a problem-solving system (Barr &
Feigenbaum 1981). Each entity in the coNcEPTMAP database is represented by one concept
schema and at least one role schema. A concept can represent any spatial object and associates
a name with a set of attributes stored in the concept and role schemata. A concept such as
‘washington d.c.” might have multiple role schemata defined, each representing a different
view of the same spatial area, such as ‘political’, and ‘demographic’. A concept such as
‘georgetown university’ might have multiple role schemata defined for each of the campus
buildings or areas.

There are three unique identifiers generated by the coNCEPTMAP system which allow for
indirect access to additional factual properties of concept or role schemata.

(i) The concept-id is unique across all concepts in all coNcEPTMAP databases. That is, given
a concept-id one can uniquely determine the name of the spatial entity.

(ii) The role-id uniquely determines a role schema across all coNCEPTMAP databases.

(i) The role-geographics-id uniquely determines a collection of points, lines or polygons in
vector notation. Each point is represented as < latitude, longitude, elevation > .

These identifiers are also used to index into other components of the Maps database. For
example, the concept-id is used to search for landmark descriptions of measured ground control
points used during the calculation of transform functions for image-to-map and map-to-image
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correspondence. The role-id is used as the basic entity when building fast-access methods to the
spatial data by using a hierarchy tree decomposition. The role-geographics-id is used to acquire
the unique geographic position for a role schema as well as for linkage into the MAPs image
database and segmentation files generated by human interaction or machine segmentation.
There are three reasons for this approach. First, it allows coNCEPTMAP to handle very large
databases with a minimal amount of information resident in the application process. The
identifiers provide a level of indirection to the actual data, which is stored in a variety of formats
and may or may not be present for a large subset of the database. Second, we can achieve a
great deal of flexibility and modularity in processes which communicate about spatial entities.
Given the name of a coNCEPTMAP database, a concept-id or role-id uniquely determines the
entity in question. This facilitates the construction of application programs with simple query
structures, requiring a minimum of communication overhead. Finally, given this decoupling
from the coNcepTMAP database, each of the MAPs component databases —image database,
terrain database, landmark database and map database — may be physically resident on a
different workstation or mainframe.

2.2. A geodetic frame of reference

An implicit requirement crucial to successful application of spatial knowledge for
image analysis is that the metrics used by the analysis system be defined in cartographic
coordinates, such as < latitude, longitude, elevation >, rather than in an image-based
coordinate system. Systems that rely on descriptions such as ‘the runway has area 12000 pixels’
or ‘suburban homes are between 212 and 345 pixels in area’ are useless except for (perhaps)
the analysis of one image. Further, spatial analysis based on the semantics of above, below, left-
of, right-of, etc., are also inappropriate for general interpretation systems. To apply
metric knowledge, one must relate the world model to the image under analysis. This should
be done through map-to-image correspondence with camera models. We can directly measure
ground distances, areas and absolute compass direction, and recover crude estimates of height
using a camera model computed for each image under analysis. The MaPs system allows us to
express spatial knowledge in ground-bases metrics, which in turn allows us to work with
imagery and map data at a variety of scales and resolutions.

In the following sections we describe the first of our three experimental analysis systems,
MACHINESEG. It can be characterized as using low-level spatial knowledge, primarily two-
dimensional shape information, coupled with general positional information to guide region
analysis and segmentation.

3. MAP-GUIDED IMAGE SEGMENTATION

MACHINESEG (McKeown & Denlinger 1984) is a program that performs map-guided image
segmentation. It uses map knowledge to control and guide the extraction of man-made
and natural features from aerial imagery using a region-growing image-analysis technique.
MACHINESEG uses the CONCEPTMAP database from the MAPs system as its source of map know-
ledge. Figure 2 shows the interaction between the map database and image-processing and
feature-extraction tools. Map knowledge can be used to represent generic shapes, sizes and
spectral properties typical to a large class of objects such as roads, or can describe specific
features such as known buildings, where geodetic position may be known as well as the more
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FIGURE 2. MACHINESEG: map-guided feature extraction.

general structural properties. For the latter we have been able to segment a diverse set of
cultural features such as buildings, reservoirs and roads, using map-to-image correspondence
to project map-based descriptions on to a new image under analysis. This projection generally
only provides a coarse idea of the actual position of the feature, but greatly constrains search
in the image. MACHINESEG uses the following components of the MAPs system.

(1) CONGEPTMAP to retrieve shape and position models.

(ii) Map-to-image correspondence to project models on to new imagery and image-to-map
correspondence to calculate metric distances and areas. :

(iii) CONCEPTMAP to store extracted features from several images before interactive editing
and integration into the database.

It is important to characterize what we mean by ‘map-guided’ image segmentation. Map-
guided image segmentation is the application of task-independent spatial knowledge to the
analysis of a particular image, using an explicit map-to-image correspondence derived from
camera and terrain models. Map-guided segmentation is not interactive editing or computation
of descriptions in the image domain, because these descriptions are valid for only one specific
image. As we have described, each role schema contains a role-geographic-id which points to
a geodetic description ( < latitude, longitude, elevation > ) for each map entity in the
coNCEPTMAP database. This description is in terms of points, lines and polygons, or collections
of these primitives. Features such as buildings, bridges and roads have additional attributes
describing their elevation above the local terrain, as well as their composition and appearance.
The location of each map feature in the database can be projected on to a new image by a map-
to-image correspondence maintained by maps. Likewise, a new map feature can be projected
on to the existing image database. If camera-model errors are known, one can directly calculate
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an uncertainty for image-search windows. Further, as new features are acquired their positions
can be directly integrated into the map database by using image-to-map correspondence
procedures.

Figure 2 shows a schematic description of the map-guided feature-extraction process in MAPS.
There are two methods for applying map knowledge to the extraction of features from aerial
imagery. The first method uses generic knowledge about the shape, composition and spectral
‘properties of man-made and natural features. This may be provided by the knowledge base of
the application. The second uses map-based template descriptions. These descriptions are
stored in the cONCEPTMAP database and represent knowledge about known buildings, roads,
bridges, etc. This knowledge includes geodetic position, shape, elevation, composition and
spectral properties. In the second case, the position, orientation and scale are constrained,
whereas in the first, only the scale can be determined. For both to operationalize spatial
knowledge for the analysis of a particular image, a map-to-image correspondence is performed.

Photographs shown in figure 3, plate 1, show the sequence of region-merging steps performed
automatically by MACHINESEG using a generic shape description for a set of buildings near the
Ellipse park in Washington, D.C. Photograph 0 shows the original image. Photographs 1-5
show how the region merges are evaluated against the shape description, those regions
satisfying the shape criteria being marked as solid filled polygons. While a large number of
potential regions are generated from the initial image (1), only a small number correspond to
buildings. Photograph 5 shows the final result of all seven buildings correctly segmented, with
two incorrect segmentation regions generated.

It should be stated that MACHINESEG does not have a model of buildings, or the relation of
buildings to roads, or any particular high-level description of the image under analysis. Such
models or expectations must be provided by other processes, such as an interactive user, or an
analysis system. What makes MACHINESEG a powerful image-analysis tool is that it can use
shape descriptions and search among the region segmentation for those regions that best match
the segmentation in terms of shape, size and orientation properties. Thus, MACHINESEG is a good
example of a low-level generator of plausible regions that must be analysed by intermediate
and high-level processes within the context of a particular task. It can be argued that more
specific knowledge about the structure of buildings and roads should be brought to bear at the
low level. Our philosophy has been to avoid that feature-specific approach during the
segmentation phase and to defer such analysis until a coarse overview of the entire scene can be
accomplished.

In the following section we describe a system, ARF, that produces intermediate-level and
high-level descriptions of roads in high-resolution aerial imagery. It uses knowledge about the
structure of roads and employs multiple methods to improve overall system performance. In
contrast to MACHINESEG, which can also be used to segment linear features, such as roads,
railroad lines and certain drainage patterns, ARF relies on a very specific model of roads to
achieve a much higher reliability and performance levels than could be achieved with a general
region-based system such as MACHINESEG.

4. COOPERATIVE METHODS FOR ROAD TRACKING

Road finding in remotely sensed imagery has often been equated with linear feature
extraction. The rationale was that finding linear features in imagery either by region extraction
or line finding was equivalent to finding roads. Further, line finding also worked for other types
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of linear features such as drainage, bridges and railroads. This view was appropriate considering
the relatively low-resolution imagery, such as Landsat mss, that was available at the time and
in use by the image-processing community. However, we now have access to large-scale, high-
resolution imagery that allows for the structural analysis of the road surface. In fact, for
practical mapping applications, simply estimating the location of the road centre line is
inadequate. For practical mapping applications a detailed analysis must be performed in order
to maintain positional accuracy and to extract attributes of the road such as surface material,
number of lanes, location of overpasses and cloverleaves.

One can categorize previous work in the area of road finder—followers into one of three
major types: correlation trackers, region-based followers and edge linkers. All of these methods
use a single local tracking strategy to find roads. Therefore a major problem with previous work
is that if the method fails at some point it is very difficult to recover. Further, it is often difficult
to automatically recognize when the tracking method has failed because the local nature of
these methods assumes that the local maximum, no matter how poor, is its best guess for the
position of the road.

Our approach in the ARF (a road follower) system (McKeown & Denlinger 1986) for road
tracking is to use multiple cooperative methods for extracting information about road location
and structure from complex aerial imagery. This system is a multilevel architecture for image
analysis that allows for cooperation among low-level processes and aggregation of information
by high-level analysis components. Two low-level methods have been implemented; road-
surface texture correlation and road edge following. Each low-level method works indepen-
dently to establish a model of the centre line of the road, and to extract various road properties
such as width, surface material changes and overpasses. Intermediate-level processes monitor
the state of the low-level feature-extraction methods and make evaluations concerning the
success of each method. As a result of these evaluations one tracking method may be suspended
due to apparent failure and restarted from the model generated by other successful trackers.
Finally, a high-level module generates a symbolic description of the road in terms of various
attributes of the road such as centre line, road width, surface material, overpasses and indication
of potential vehicles on the road. This description is available in both map and image coordinate
systems. Each tracker makes assumptions and uses road-specific knowledge in its image analysis.
The surface tracker makes the assumption that the road exhibits nearly constant width and
- that the surface-intensity profile on the road changes either very gradually or suddenly. Abrupt
changes in the surface-intensity profile may indicate surface material change, occlusions by
trees or overpasses, or shadows cast by nearby buildings. The edge tracker makes the
assumption that the road edges will be locally straight and antiparallel. Both trackers assume
that the road exhibits a slowly changing direction and that its path can be modelled locally by
a parabola. Figure 4 gives a description of the overall organization of the cooperative road
tracker system. : « : : . .

There are several problems inherent in the use of multiple-tracking algorithms simultan-
eously. The major problem is one of information fusion, that is, the information generated by
the two methods may give different estimates of road direction, width, etc. How can we
reconcile these conflicting sources of information? A further complication is that we may not
be able to determine which method is ‘correct’ until we proceed further down the road. One
common example occurs when- the surface correlator encounters a surface-material change.
Therefore, it is important for the system to defer decisions and to re-evaluate decisions in the
light of new evidence or situations. Both models are maintained even when we are not tracking
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ARF: ROAD TRACKING VIA COOPERATIVE METHODS
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Ficure 4. ARF system organization.

with one of the methods so that if, for example, the surface tracker does not give gooél
correspondence we can still re-acquire the road. Each model consists of three components:
surface cross section, path and edges. Each component is kept consistent with the actual road
over the entire road path, whether tracking with both methods simultaneously or tracking with
only one. Another major problem is keeping the surface model up-to-date when tracking the
edges only. If that is not done properly, it would be possible for the road surface to change while
we are tracking only the edges. In this case the road history model will not reflect the actual
surface intensity. Figures 5 and 6, plate 2, show two snapshots of the road tracker running on

< a representative high-resolution aerial image. Note that ARF produces textual descriptions of
— surface-material changes, overpasses and road-width changes, annotated on the display for the
; > user. The positions of these features are stored in both image and geographical coordinates and
olm can be superimposed by map-to-image correspondence on other imagery of the same road.
= g Figure 5 shows a point where the edge tracker fails, primarily because of surface-material
O change on a bridge-deck overpass. It is determined by the high-level evaluation module that
E 8 the two trackers have diverged, that the surface-tracker model is better than the edge tracker,

and therefore the edge tracker is restarted from the surface-tracker model. In figure 6 the
overpass is detected as well as the bridge-deck surface change, and a width change as the road
narrows because of an incoming lane.

In the following section we describe a system, spaM, that uses spatial and structural con-
straints represented as production rules to interpret airport and suburban house scenes.
spPAM is an example of a high-level knowledge-based interpretation system which uses several
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image-analysis programs to perform image segmentation and verification, but does not itself
directly address image analysis. sPAM acts as a coordinator and evaluator of symbolic
descriptions generated by other components performing image analysis.

5. RULE-BASED AIRPORT SCENE INTERPRETATION

SPAM, system for photo interpretation of airports by using MAPs, is an image-interpretation
system. sPAM (McKeown & McDermott 1983; McKeown et al. 1985; McKeown & Harvey
1987) coordinates and controls image segmentation, segmentation analysis and the construc-
tion of a scene model. It provides several unique capabilities to bring map knowledge and
collateral information to bear during all phases of the interpretation. These capabilities include:

(i) the use of domain-dependent spatial constraints to restrict and refine hypothesis
formation during analysis;

(ii) the use of explicit camera models that allow for the projection of map information on
to the image; , o

(iii) the use of image-independent metric models for shape, size, distance, absolute and
relative position computation; :

(iv) the use of multiple-image cues to verify ambiguous segmentations. Stereo pairs or
overlapping image sequences can be used to extract information or to detect missing
components of the model. :

Figure 7 shows the overall organization of the interpretation system. sPAM maintains an
internal spatial database that is composed of features extracted from imagery by various
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FIGURE 7. spPAM: system organization.
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methods, possibly from several images, where the features are represented in terms of their
geodetic position rather than their image coordinates. In fact, spam performs interpretation in
map space which allows for a variety of knowledge such as maps and multitemporal imagery
to be handled in a uniform manner. spaM uses the following components of the MAPs
system:

(i) coONGEPTMAP to retrieve shape and position models and site-specific map knowledge;

(ii) map-to-image correspondence to project models on to new imagery and image-to-map
correspondence to calculate metric distances and areas;

(iii) procedures to compute spatial relations between hypotheses including containment,
intersection, adjacency, closest point of approach, and subsumption.

5.1. The SPAM architecture

sPAM represents four types of interprétation primitives, regions, fragments, fractional areas
and models. spAM performs scene interpretation by transforming image regions into scene
fragment interpretations, aggregating these fragments into consistent and compatible collec-
tions called functional areas, and selecting sets of functional areas that form models of the
scene. Loosely speaking there are four phases of interpretation.

Phase 1: region-to-fragment. Assigns the image region data a set of fragment interpretations
based solely on local properties (2D shape characteristics, texture, 3D depth, height, etc.) and
knowledge about the classes of objects found in the scene.

Phase 2: local-consistency-check. Pair-wise tests are performed on the fragment interpretations that
use spatial knowledge about the scene under consideration. The confidence of those inter-
pretations supporting one another is incremented based on the quality of the test.

Phase 3: functional area. Sets of mutually consistent interpretations that share similar functions
or are spatial decompositions of the scene are grouped into cliques called functional areas.

Phase 4 : model-generation. Sets of functional areas are groupéd together into scene segments. The
segments with the largest number of functional areas become distinct scene models. Any
conflicts encountered when combining functional areas are resolved by a default strategy, using
the accumulated support for each interpretation, or by specific knowledge added by the
user.

Each of these four phases operationalizes one or more types of domain knowledge. To build
a sPAM system we must be able to acquire knowledge for each interpretation phase. This
knowledge is represented as production rules. Over 500 productions are currently used in the
airport-scene interpretation task, nearly half of which are used to evaluate and propagate local
consistency. ‘ :

As shown in figure 8 each phase is executed in the order given above. spAm drives from a
local, low-level set of interpretations to a high-level, more global, scene interpretation. There
is a set of hard-wired productions for each phase that control the order of rule executions, the
forking of processes, and other domain-independent tasks. However, this ‘bottom-up’ organi-
zation does not preclude interactions between phases. For example, prediction of a fragment
interpretation in functional-area phase will automatically cause spam to re-enter local-
consistency phase for that fragment. Other forms of top-down activity include stereo verification
to disambiguate conflicting hypotheses in model-generation phase and linear alignment in
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Ficure 8. Interpretation phases in spam.
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Ficure 9. Refinement, consistency and prediction in spaM.

region-to-fragment phase. Figure 9 shows the refinement—consistency—prediction paradigm
used in sPaM within each interpretation phase. Knowledge is used to check for consistency
among hypotheses, to predict missing components using context, and to create contexts based
on collections of consistent hypotheses. Prediction is restrained in spaM, in that hypotheses
cannot predict missing components at their own representation level. A collection of hypotheses
must combine to create a context from which a prediction can be made. These contexts are
refinements or spatial aggregations in the scene. For example, a collection of mutually consistent
runways and taxiways might combine to generate a runway functional area. Rules that encode
knowledge that runway functional areas often contain grassy areas or tarmac may predict that
certain subareas within that functional area are good candidates for finding such regions.
However, an isolated runway or taxiway hypothesis cannot directly make these predictions. In
spaM the context determines the prediction. This serves to decrease the combinatorics of
hypothesis generation and to allow the system to focus on those areas with strong support at
each level of the interpretation. '

5.2. Stereo image analysis

One image-analysis component of the spAM system is a stereo-verification module, STEREOsYS
(McKeown ¢t al. 1986). Stereo verification refers to the verification of hypotheses about a scene
by stereo analysis of the scene. Unlike stereo interpretation, stereo verification requires only
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coarse indications of three-dimensional structure. For aerial photography, this means coarse
indications of the heights of objects above their surroundings. STEREOsYs is used within the spAM
system to confirm or refute airport feature hypotheses based on their three-dimensional
structure, and operates at a high level of abstraction. The input to STEREOSYS is a segmentation
region and two conflicting fragment hypotheses. STEREOSYs returns to sPAM a set of confidence
factors that relate the overall confidence of the stereo match and confidence factors for each of
the alternative hypotheses.

Stereo verification deals with a variety of problems that are not ordinarily present in isolated
experiments with stereo matching and analysis. Some of the most interesting problems within
the spatial database context are the following:

(i) an appropriate conjugate image pair has to be selected from a database of overlapping
images based on criteria that would maximize the likelihood for good correspondence;

(ii) the image pairs must be dynamically resampled such that the epipolar assumption (i.e.
epipolars are scan lines) used in most region-based stereo matching algorithms can be applied;

(iii) an initial coarse registration step is generally necessary because the quality of the
correspondence between conjugate pairs varies greatly, in many cases the magnitude of the
initial misregistration being greater than the expected disparity shift.

These requirements, in turn, raise a broad set of research issues. In terms of spatial databases
the major questions are related to how an aerial image database can be used to generate
automatically a useful stereo pair containing an arbitrary region, and how a stereo system can
handle the misregistration problems inherent in multisource image databases. The result of this
research indicate that image-map database issues in stereo verification influence the utility of
such an approach as much as the underlying stereo-matching algorithm. In fact, they are
intimately related. The ability to be flexible in the selection of stereo pairs provides oppor-
tunities for multitemporal, multiscale or multilook matching. Equally important is flexibility
in the matching algorithm, especially with respect to assumptions that require nearly perfectly
aligned conjugate images. STEREOsYs uses the following components of the MAPs system.

(i) MAGE database to select appropriate conjugate-pair imagery bases on time, scale and
flightline information. ‘ :

(ii) Image-to-map correspondence to resample imagery to a common rectified projection so
that epipolars align as scan lines in the image.

(iii) TERRAIN database for resampling imagery.

Figure 10, plate 3, shows an area around a hangar at National Airport in Washington, D.C.
The left image contains a region of the image under analysis by spam. The right image was
selected by sTEREOsYs as the conjugate pair from the database of images maintained by MaPs.
An initial registration was performed to calculate a global disparity shift between the left and
right images. This disparity shift corresponds to a displacement of corresponding points in the
images due to misregistration between imagery and the maps database. The global disparity
shift is used to generate a new resampled image that accounts for inaccuracies in the MAPs
database and preserves the epipolar matching constraint. The left image and the resampled
image are now matched by sTEREOsYS using hierarchical correlation and produce a disparity
image registered to the original left image. The disparity value is one-to-one correspondence
with distance, or depth, from the camera and therefore indicates relative height in vertical
aerial photography. In this case, dark pixels indicate points in the disparity image that are close
to the observer, light points are further away calibrated towards the ground plane of the scene.
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STEREOSYS uses a statistical analysis of the disparity image to generate confidence factors that
the region in the left image has low height confidence, 0.051; moderate height confidence,
0.159; and significant height confidence, 0.791. STEREOsys generates an overall match
confidence of 0.818 that confirms the hypothesis of ‘hangar building’.

6. CONCLUSIONS

We have described three examples of image-analysis systems that integrate and use spatial
knowledge with image analysis and interpretation techniques. Each example has been shown
to rely on a spatial database of geographically referenced facts to provide information crucial to
the interpretation task. Each system performs interpretation at a different level of detail,
depending on the task and the overall goals of the interpretation system.

I thank the organizers of this conference, particulary Dr B. J. Conway, for a very interesting
and enjoyable meeting. I also acknowledge my colleagues at the Digital Mapping Laboratory;
particularly J. Denlinger, W. Harvey and J. McDermott for their contribution to the research
results reported herein.
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Ficure 5. ARF: edge tracker fails on low-contrast overpass, successtully restarted from surtace tracker.
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FIGURE 6. ARF: successful detection of overpass and surface material change due to bridge deck.
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Ficure 10. Stereo verification in airport scene analysis.
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